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We give here a physical picture that exponential instability can occur with the coherence of states
preserved in a mixed quantum classical description. Taking advantage of the concept of the geometrical
structure of a quantum system, we are able to illustrate our ideas with some examples in a simple
manner. This kind of chaos may be important for further investigations of chaotic behaviors in systems

with both quantum and classical degrees of freedom.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

Chaotic behaviors in classical systems are well under-
stood now [1]. However, whether chaos in the strict
meaning, i.e., exponential instability, can occur in quan-
tum systems or not is far from clear [2,3]. It is argued
that there is no exponential instability in autonomous
bounded quantum systems [4,5]. Recent studies in the
field of quantum chaos also show that usually quantum
fluctuation and interference tend to suppress classical
chaos [6—8]. These may be the reasons why the current
research of quantum chaos is mainly focused on the clas-
sical quantum correspondence in the semiclassical regime
[2]. While it is still vague how the classical chaos mani-
fests itself in the properties of a corresponding full-
quantized system [3], another avenue of quantum chaos
research derives from the observation that for some sys-
tems of theoretical and practical importance the system
divides in a natural way into two interacting subsystems,
one of which is treated quantum mechanically, whereas
the other is treated in the frame of classical mechanics
[9,10]. It is shown that for those dynamical systems with
both quantum and classical degrees of freedom it may be
impossible to make long term forecasts even for the quan-
tum mechanical probabilities. In fact, this phenomenon
is not completely new; several similar cases, though not
treated so seriously in this sense, have already been re-
ported, for example, a two-level system interacting with
the electromagnetic field of a laser cavity [11] and the nu-
clear collective motion [12]. As one of the main aims of
the article, we will analyze the above-mentioned systems
from a rather fundamental point of view, which may
push the research of the so called semiquantum chaos
forward to a certain extent and help to find more analo-
gous systems solvable in a simple manner.

Since Schrodinger first proposed the idea of what are
now called ‘“‘coherent states” in order to show quantum
classical correspondence, developments in the field of
coherent states and their applications have been breath-
taking [13]. The theory of coherent states is taking on in-
creasing importance in the attempt to understand the
fundamental aspects of quantum mechanics. The
coherent state theory has also been a useful tool for the
research of quantum chaos [14,15]. Here we try to use it
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for the research of chaos in mixed quantum classical
description. The geometry on the space of parameters
that label the coherent states induced by the group struc-
ture is a complex homogeneous space with a natural sym-
plectic structure and can be looked at as a ‘“curved”
phase space of the quantum system [16,17]. Because the
algebraic structure of operators in the quantum phase
space is preserved if the operators are linear functions of
the generators of the dynamical group, we find a variety
of systems containing both quantum and classical degrees
of freedom, whose dynamical evolution can be completely
determined by a set of classical-like canonical equations.

When the Hamiltonian of a quantum system is a linear
function of the generators of its dynamical group, the sys-
tem is completely integrable, having a kind of dynamical
symmetry [18]. If this quantum system is coupled with a
classical system, the structure of the phase space can be
destroyed by the interaction. But this interaction can
keep the coherence of states simultaneously. Previous
researches on the quantum manifestations of classical
chaos, which show that the uncertainty of a wave packet
initiated at a coherent state will exponentially increase
within a scope of time as the correspondence of classical
instability [19,20], may give us a mistaken impression
that keeping the coherence of states cannot be realized
together with the chaotic behaviors.

This article is organized as follows. In Sec. II, we
present a brief review of the geometrical structure of a
quantum system. This will greatly simplify our discus-
sions in the next sections. In Sec. III, after some general
considerations, examples of quantum systems with the
dynamical groups SU(2), H,, SU(1,1), and H, respective-
ly, are shown to be possible to have exponential instabili-
ty with coherence preserved when they are coupled with
classical degrees of freedom. In Sec. IV, we summarize
our results and present some discussions.

II. GEOMETRICAL STRUCTURE
OF A QUANTUM SYSTEM

It is well known that for an arbitrary quantum system,
there always exists a group structure. The Hamiltonian
H and the elementary transition operators T can be ex-
pressed as functions of a set of self-adjoint operators (T3,
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i=12,...). The operators T; form an algebra g:
(7, T;]1= Ei=1C,-']‘-Tk where the coefficients C,-’J? are the
structure constants of g. The dynamical group denoted
by G is the covering group of g defined by a unitary map-
ping
g—G=exp [izajTj] . (1)
j

According to the group representation theory, the state
space as a representation space of G can be decomposed
into a direct sum of the various unitary irreducible repre-
sentation (irrep) carrier spaces of g. So the description of
a quantum system can be confined to a certain irrep of G.
For the harmonic oscillator, H =#w(a’a+1/2). The
dynamical algebra g is the well known Heisenberg-Weyl
algebra H,. Its basis has the following structure:

[a’aT]:I’ [ﬁ’af]zaf’ [ﬁaa]:_a,

2)
la,1]=0, [a',1]=0, [#,I]=0

The corresponding Hilbert space is the Fock space
VF(|0),[1),...). The basis states are specified by the
particle number operator f, i.e., the complete set of com-
mutable observables (CSCO) of H,. For the spin system,
the basic operators are (J . ,J_,J) with the relations

[J+’J—]:2J0’ [JO’J——]z_J——’ [JO’J+]=J+ . 3)

These operators span the su(2) algebra. The Hilbert
space is the (2j +1)-dimensional irrep space V¥ 1! of
su(2). The basis states |jm ) are specified by the CSCO
(J%J,) of the subgroup chain: su(2)Du(1) through the
equations

JHjm)Y=j(j+1)|jm), Joljm)=m|jm) . 4)

For the one-dimensional hydrogen atom,
H=(p?/2)—(1/r). The dynamical algebra is the su(1,1)
algebra whose generators obey

[K,K,]=—iK;, [Ky,K;]=—iK,, [K;K,]=IK; .

(5)

Its discrete irrep DT(k) has the basis states (|kn),
n=0,1,..., k>0) which are eigenvectors of CSCO’s
(K%,K4) of the subgroup chain: su(1,1)Du(1) where
K?=K?%—K?—K?%and K satisfy

K2|lkn)=k(k —1)|kn), K;lkn)=(k +n)lkn) . (6)

Generally, for a dynamical Lie algebra of / rank and n
dimensional, there is a CSCO (Q;) [21]:

[Qi’Qj]:—O; i’j=172’ = n2 !
Because / operators of this set specify the irrep carrier
space of g or the Hilbert space, there are only (n —1)/2
operators which are non-fully-degenerate. The basis
states of the irrep can be specified by (n —1)/2 quantum
numbers. These operators completely determine the
structure of the Hilbert space.

If we fix a state |¢y) in the Hilbert space, then all the
states (1) of the system can be generated by (n —1)/2
elementary excitation operators (X, }L) as follows:

7N

lw)=F XDl . (8)

Suppose S is the maximal stability subgroup of G with
respect to the fixed state [¢,). Then G/S is the basic
geometrical manifold of the state space. We can easily
see this from the associated generalized coherent states of
G [16]:

(n=D72 ;
Q)=exp| 3 (zX/—H.c.)|lyy)
i=1
—-n/2
=K"1/2(z,z"')exp 2 (zXD | 19o) . 9)
i=1

The normalization constant K(z,z*) is known as the
Bergmann kernel [22]. Then according to differential
geometry theory [23], there exists a closed nondegenerate
two-form w on G /S whose explicit form in the complex
local system is

. 3%nkK (z,z*)
=h —_ e
O T A

=ifi Y g;;dz; Ndz} (10
ij

dz; Ndz}

and the corresponding Poisson bracket is

[f.8],= (11)

By introducing the canonical coordinates (g,p) on G /S,
the Poisson bracket takes the standard form

dg 9f

(12)
dq; dp; 9q; 9p;

/8, =3

Any operator can be expressed in the so called Q sym-
bol or phase space representation:

A—A(z,z*)=(Q|4|Q) . (13)
For the H, case, the coherent states are
|Q)=exp(zaT—z*a)IO), K(z,z*)=exp(zz*) . (14)
The canonical position and momentum coordinates satis-

fy

IR U I
z ‘/i(q—Hp), z =(q —ip) . (15)

V2

In this representatlon, the Q symbols of the operators
ata, (a+a"y/v2, and (a —a¥)/iV2 are (p2+4¢2) /2, q,
and p, respectively. In the su(2) case, coherent sates are

ljQ)=exp(zJ L —z*T_)|j,—j)

. (16)
K(z,z*)=(1+zz*)¥
After introducing the local canonical coordinates
1 z
V4j a7 Vi+zz*

we can transform the Poisson bracket into the standard
form. The phase space representations of the generators
are
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J(g,p)=(jQlI,|jQ)
_ 2jz*
1+2zz*
=1/2(q —ip)V'4j —p*—¢q*, (18)
J_(q,p)=J%(q,p), (19)

Jolg,p)=(iQlJoliQ)

zz*—1

1+2zz*

=1/2(p*+q*—2j) . (20)

=Jj

In the su(1,1) case, coherent states are
|kQ)=exp(zK . —z*K _)|k,0) ,
K, =K,+iK,, 2n
K(z,z*)=(1—zz*)"%* .

The canonical local coordinates g,p take the form

1 z
\/ZE(q ip) V1—zz* 22)

The phase space representations of the generators are

K (g,p)=(kQ|K  |kQ)

— 2kz*
1—zz*
=1/2(q —ip)V 4k +p*+4q?, (23)
K _(¢,p)=K%(q,p), (24)
Ky(g,p)=(kQ|K;|kQ)
* 2 2
_—=k_1iz£__-—_ k+L+_q_ . (25)
1—zz* 2

For detailed information about the Q symbol in the
representation of canonical coordinates, especially in the
cases of other dynamical groups, the reader may refer to
papers [24,25].

III. COHERENCE-PRESERVING CHAOS

In Sec. II, based on the basic structure of quantum

state or operator can be given. But we have not touched
the dynamics of quantum mechanics. Generally, for any
two arbitrary operators A and B,

(QI[ 4,B]|Q)7i#] 4 (p,q),B(p,9)], , (26)

which means the algebraic structure between operators is
usually not preserved in the phase space representation
due to the quantum fluctuations manifested in the quan-
tum phase space. This is just the elementary difference
between quantum and classical mechanics.

However, the commutation relations for generators of
the dynamical group do survive [26]:

(Q[[T, T;11Q)=i#[T,(p,q), T;(p,q)], . (27)

This property can be easily verified using previous exam-
ples. So only if operators are linear functions of the gen-
erators can the algebraic structure be preserved. Now we
consider the following system:

H=3 fi(P,O)T;+ fo(P,Q), (28)

where P and Q are vectors in the phase space of the clas-
sical subsystem and T; are generators of the dynamical
group of the quantum subsystem. So the above Hamil-
tonian represents a variety of systems in a mixed quan-
tum classical description. A state of the system can be
denoted as (P,Q,|t)) where |t) is the state of the quan-
tum subsystem. The dynamical evolution of the classical

variables P, Q is determined by the equations:

dP _ [ |3H

i <tl—aQ t) R (29)
iQ=_< OH )

7 t P t). (30)

For the quantum variable T/ in the Heisenberg picture,
we have

THE=U"t,1,)T,U(t,t,) , &3
ar?’ 1 . .

! =T . 32
dt iﬁ[T' HT] G2

Suppose t;=tq+i(t —ty)/N, i=12,...,N, then the
time evolution operator U (¢,¢,) can be written as

mechanics, we introduced the concept of quantum phase .. =N
space. In the quantum phase space, provided there are Ult,t)= A}‘_’_nw Hx Ut ti—y) (33)
suitable local coordinates on the manifold G /S, a unique =
and explicit phase space representation of any quantum  where
J
it
Ul(t;,t; - )=exp 7N [Zf,»(P(ti),Q(ti))Tj+f0(P(t,-),Q(t,~))] . (34)
j

For H is only a linear function of the generators of the dynamical group, the operator U(t,¢,) is just a group element
g (t,t,) €EG with an unimportant phase factor ignored. We can derive this result directly from the above equations (1),
(33), and (34).

Using the basic theorem of group theory, one can find the following decomposition is unique [27]:

g(4,t0)Q=Q'(t)s(t), Q,Q'EG/S; sES . (35)
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Then we have

Ul(t,1)|Q) =g(1,19)Qo) =Q'(1)s(D)|1ho) =|Q'(£) ) e ¥V .

(36)

In getting this relation, the property of the operator s as an element of the maximum stability subgroup .S with respect
to |1,) has been used. Equation (36) just means that a coherent state will be always a coherent one during its evolution.

As a result of Egs. (27) and (36),

dr? d - d
<a == n)-zmm 0)=£-Tp(),q0) (37)
;%(ﬂ][TiH,HHHQ)=71}-i—(9’(t)|[T,.,H]iﬂ'(t)):[T,-(p(t),q(t)),Heff(p(t),q(t),P(t),Q(t))]p , (38)
The above expression H 4(p,q, P, Q) is defined as follows:
H 5(p(1),q(),P,Q)=(Q'(1)|H|Q'(2)) . (39)
So after taking the Q symbol of Eq. (32), we immediately have
%Ti(p(t),q(t))=[T,-(p(t),q(t)),Heg(p(t),q(t),P(t),Q(t))]p ) (40)
f
Combining Egs. (29), (30), and (40), we conclude that the m 2 2L @0, 5.
exact solutions of the system H are completely deter- (p,q,P,Q)=3(P°+Q )+_2‘(P +g"—2s)
mined by H.; through a set of classical-like canonical — e
equations; +V2AgQV'4s —p*—gq* . (45)

ar _ OHe _‘LQ,:.__BE_S‘T_ (41)
dt 0Q ' dt oP ’

Liﬂz_a_l_lff_; .fd_q_z__agif. . (42)
dt dq dt ap

Just in this meaning, we call H 4 the effective Hamiltoni-
an for this system. It is not difficult now to verify wheth-
er chaos can occur or not. But remember, coherence of
states is always preserved in the kind of system expressed
by (28). Now we turn to some applications.

A. Example 1: A spin-boson system

The Hamiltonian of this system in the full quantized
form is

H=b"b+wyS, +Ab+b")(S, +S5_). (43)

It describes a two-level system interacting with a single
mode field ignoring the two-photon processes. Before its
full quantized behaviors were investigated carefully to
understand quantum chaos [28,29], many papers dealing
with the system semiclassically had been published
[30,31]. Recently, in the consideration of nuclear collec-
tive motion [12], the same method treating the field as a
classical variable was applied. Here we present our way
in a systematic way and a simple manner.

(i) No field quantization. This Hamiltonian is rewritten
into

HU=1(P2+ Q) +0yS, +V2AQ(S, +S_) . (44)

The quantized subsystem posseses an SU(2) dynamical
group. H'' is a linear function of the generators. So the
dynamics can be determined by the effective Hamiltonian

The behavior of the trajectory (p(t),q(¢),P(¢),Q(¢)) in
the four-dimensional phase space can be chaotic due to
previous papers [29,31].

(ii) Only field quantization. As far as we are aware,
this case has not been touched. Here we will not discuss
under what conditions we can treat the spin as a classical
degree of freedom while the field quantization is impor-
tant. Our interest lies only in the dynamical behaviors in
the mixed quantum classical description. The Hamiltoni-
an in this case is

H™=pTp+ 0,8, +20b +b7)S,

=btp+20 > (P24 Q%—25)

+AQVas —P?—Q%b+b"), (46)

in which the classical canonical variables P and Q satisfy-
ing

S, =LP*+Q2—2s),

S, o e — Q , 47
\/s S T (47)

have been introduced. Obviously H''™® is a linear func-
tion of generators of the group H,. Then the effective
Hamiltonian is

w
H™(p,q,P,Q)=1(p>+q?)+—>(P*+Q?~2s)
+Vv2AQqV '4s —P2—Q2 . (48)
Interestingly, we find

(la)(p,q,P Q)_

So the structure of the phase space of H'}®' is identical
with that of H}®). The coherent states of H 4 are found
first and known best. It has the minimum uncertainty:

HIY(P,0,p,q) . (49)
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(AQ2>=(AP2)=~’?. (50)

We should emphasize here the physical picture: A
minimum uncertainty wave packet evolves chaotically, in
the meaning of the exponential instability of its average
position and average momentum, but its width or its
coherence is preserved all the time. This unusual feature
may exist only in the mixed quantum classical descrip-
tion.

B. Example 2: A classical oscillator interacting
with a purely quantum mechanical oscillator

The Hamiltonian is [10]

HP=1p>+9>+P>+3°Q?%) . 51
It can be also written as
2 T2 t
HP=alg+1p24 8101200 00 sy
We define the three operators
f24 .2 f2__ 2 ala+1
—a’"ta” —a’—a =77
1= 2 > 2 YR K, 2 . (53)

It is easy to verify K, K,, and K satisfy the commuta-
tion relations in (5). So the three operators span the
su(1,1) algebra. Noticing that

H®=(Q*+2)K;+Q%K,+LP*+const (54)

as a linear function of the generators, we can describe the
system by an effective Hamiltonian. In the Fock space
V¥, a simple calculation tells us

K*=K}—Ki—K3;=—3%, (55)
which means the Hilbert space is the irrep carrier space

of su(1,1) denoted as DT(%). The effective Hamiltonian is
found out easily based on our preparations:

In fact, our present work was induced by the very recent
paper [10] by Cooper et al. In their paper, it seems that
a different-looking effective Hamiltonian was obtained by
accident. And the phase space was introduced unnatur-
ally. But we would like to compare our results to theirs.
After defining the quantity

G=(Q|3?%|Q)=2K,(q,p)+2K;(g,p) (57)

we immediately obtain the relation appearing in the pa-
per [10]:

dG /dt
G

2
1
4G?

1d*G/dt> 1
2 G 4

+1=0. (58)

The Gaussian wave packets they used are just the
coherent states of su(1,1), or the so called restricted kind
of squeezed states. Their numerical results assure us
chaos can appear in this system preserving the general-
ized coherence of the su(1,1) algebra.

C. Example 3: Two-photon processes derived
by a classical source

The Hamiltonian takes the form

H=#[f(Data+fy(a*+f2(a+f(a+FE@)a’].
(59)

The dynamical algebra is H¢ made up of the six operators
(aTa+1/2,an,a2,aT,a,I). As we can find, H is again a
linear function of the generators of the dynamical group
when we enlarge it from H, to Hi. Detailed information
related to the construction and the application of the
coherent states in this case can be found in the Ref. [32].
Here our aim is to point out that, in this system,

1 2442 P2 coherence-preserving chaos can also occur. So we would
2) —=(0? LI i’ L
He (p,q,P,Q)=(Q7+2) 4 + ) + ) like to discuss it in a different way. Yuen [33] has already
calculated the explicit expression for the time evolution
+ _Q_2 q\/ﬁ-p—z-rt? (56) operator in the representation of the coherent states of
2 ) H4:
J
(a|U(,t4)|B) =exp{ —1/2]|al?*—1/2|B|*+ A (t)+B ()32 +C(t)a**+[D (1) +1]a*B+E(t)B+F(t)a*} , (60)
where A4 (t), B(t), C(t), D(t), and F(t) satisfy a set of differential equations dependent on the functions f(t), f,(t),
and f;(1):
94— sorsc+r3P+r30), E=—irzp 417, 61)
I — —aurscr+ar,04+py), L =—itarscrrom 4D, 62)
dE _ . . .. . dF _ . ., * +
—‘}t———z(Zf2F+f3 XD +1), 71’———z[(4f2C+f,)F+2f3C+f3 1. (63)

The above set of equations are integrable. But if f,, f,, and f are not known functions of ¢ but determined by the in-
teractions between the classical field and the quantum subsystem like

fi=rfia'(t),a())=f,(A(1),B(1),C(1),D(2),E(2),F(1))

(64)
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there are enough reasons to expect nonintegrability to ap-
pear as in the previous examples. Then the time evolu-
tion operator U (t,t,) will show the very sensitivity on in-
itial conditions. But the generalized coherence of H is
still preserved for the simplicity of the Hamiltonian.

IV. CONCLUSION AND DISCUSSION

After introducing the concept of quantum phase space,
i.e., the geometrical structure of a quantum system, we
are able to analyze a variety of systems in a mixed quan-
tum classical description conveniently. It is found that
chaos in its strict meaning can occur when quantum de-
grees of freedom are coupled with classical degrees of
freedom. Examples in which the Hamiltonian is ex-
pressed as a linear function of the generators of the
dynamical group belonging to the quantum subsystem are
demonstrated to be possible to show chaotic behaviors
with coherence of states preserved. These systems can be
described by a classical-like effective Hamiltonian
without any approximation.

As every quantum system has a group structure, our
method may have some applications in other systems.
The dynamical groups U(N), SO(2N), and SP(2N) have
been extensively used to describe both the atomic and nu-
clear systems. The concept of quantum phase space is of
importance to understanding the correspondence of

quantum and classical mechanics in these systems. When
these systems are coupled with classical degrees of free-
dom, we say it is possible for exponential instability to
occur at least when the Hamiltonians are linear functions
of generators of their corresponding dynamical groups of
the quantum subsystems. When the Hamiltonian con-
tains small parts expressed as nonlinear functions of the
generators of the dynamical group of the quantum sub-
system, we conjecture that the exponential instability
may not disappear because the complexity of the phase
space structure may not change much in the chaotic re-
gion while subjected to a small perturbation. This point
will help to understand semiquantum chaos in a larger
number of systems. Coherence-preserving chaos gives us
a different physical picture, and applications may be
found, particularly in the understanding of the irregular
behaviors in the full quantized systems. What are other
kinds of chaos, i.e., exponential instability, in the mixed
quantum classical description, and how can they be de-
scribed in a systematic way, are both interesting ques-
tions.
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